310 research outputs found

    The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa

    Get PDF
    Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production

    Non-methane organic gas emissions from biomass burning: Identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Get PDF
    Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90ĝ€-% of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (Iĝ\u27 CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, ofĝ€ & ĝ€-0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire

    Think Outside the Color Box: Probabilistic Target Selection and the SDSS-XDQSO Quasar Targeting Catalog

    Full text link
    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 <~ z <~ 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient, and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 <= z 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg^2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available

    Liquid Medication Errors and Dosing Tools: A Randomized Controlled Experiment

    Get PDF
    Poorly designed labels and packaging are key contributors to medication errors. To identify attributes of labels and dosing tools that could be improved, we examined the extent to which dosing error rates are affected by tool characteristics (ie, type, marking complexity) and discordance between units of measurement on labels and dosing tools; along with differences by health literacy and language

    Kinetics of early innate immune activation during HIV-1 infection of humanized mice

    Get PDF
    Human immunodeficiency virus type-1 (HIV-1) infection is associated with aberrant immune activation, however, most model systems for HIV-1 have been used during established infection. Here, we utilize ultra-sensitive HIV-1 quantification to delineate early events during the HIV-1 eclipse, burst and chronic phases of HIV-1 infection in humanized mice. We show that very early in infection, HIV-1 suppresses peripheral type I interferon (IFN) and interferon-stimulated gene (ISG) responses, including the HIV-1 restriction factor IFI44. At the peak of innate immune activation, prior to CD4 T cell loss, HIV-1 infection differentially affects peripheral and lymphoid TLR expression profiles in T cells and macrophages. This results in a trend towards an altered activation of NFκB, TBK1 and IRF3. The subsequent type I and III IFN responses result in preferential induction of peripheral ISG responses. Following this initial innate immune activation, peripheral expression of the HIV-1 restriction factor SAMHD1 returns to levels below those observed in uninfected mice, suggesting that HIV-1 interferes with their basal expression. However, peripheral cells, still retain their responsiveness to exogenous type I IFN, whereas splenic cells show a reduction in select ISG in response to IFN. This demonstrates the highly dynamic nature of very early HIV-1 infection and suggests that blocks to the induction of HIV-1 restriction factors contribute to the establishment of viral persistence.IMPORTANCE Human immunodeficiency virus (HIV)-1 infection is restricted to humans and some non-human primates (e.g. chimpanzee, gorilla). Alternative model systems based on SIV infection of macaques are available but do not recapitulate all aspects of HIV-1 infection and disease. Humanized mice, which contain a human immune system, can be used to study HIV-1 but only limited information on early events and immune responses are available to date. Here, we describe very early immune responses to HIV-1 and demonstrate a suppression of cell-intrinsic innate immunity. Furthermore, we show that HIV-1 infection interacts differently with innate immune responses in blood and lymphoid organs

    Relapse, cognitive reserve, and their relationship with cognition in first episode schizophrenia: a 3-year follow-up study

    Full text link
    Schizophrenia is frequently characterized by the presence of multiple relapses. Cognitive impairments are core features of schizophrenia. Cognitive reserve (CR) is the ability of the brain to compensate for damage caused by pathologies such as psychotic illness. As cognition is related to CR, the study of the relationship between relapse, cognition and CR may broaden our understanding of the course of the disease. We aimed to determine whether relapse was associated with cognitive impairment, controlling for the effects of CR. Ninety-nine patients with a remitted first episode of schizophrenia or schizophreniform disorder were administered a set of neuropsychological tests to assess premorbid IQ, attention, processing speed, working memory, verbal and visual memory, executive functions and social cognition. They were followed up for 3 years (n=53) or until they relapsed (n=46). Personal and familial CR was estimated from a principal component analysis of the premorbid information gathered. Linear mixed-effects models were applied to analyse the effect of time and relapse on cognitive function, with CR as covariate. Patients who relapsed and had higher personal CR showed less deterioration in attention, whereas those with higher CR (personal and familial CR) who did not relapse showed better performance in processing speed and visual memory. Taken together, CR seems to ameliorate the negative effects of relapse on attention performance and shows a positive effect on processing speed and visual memory in those patients who did not relapse. Our results add evidence for the protective effect of CR over the course of the illness

    Caveolae protect endothelial cells from membrane rupture during increased cardiac output.

    Get PDF
    Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1(-/-) mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo
    corecore